How to create QRcode page3
top page previous page next page
Reed-solomon error correcting is used in QRcode.
First, result data in previous section are delimited to RS block data by rule of table5.
In example data, RS block number in 1-H is 1, we need not delimit.
Next select g(x) from table3.
In example data,count of error correcting code words is 17, we select below g(x).
g(x)=x17
+α43x16
+α139x15
+α206x14
+α78x13
+α43x12
+α239x11
+α123x10
+α206x9
+α214x8
+α147x7
+α24x6
+α99x5
+α150x4
+α39x3
+α243x2
+α163x
+α136
Above α is a primitive element on GF(28).
Features of GF(28) are ...
1.four arithmetic operations are supported
2.α255=1
3.We can convert exponential in α to integer (or vice versa) using table4.
Now polynomial f(x) which coefficients are data code words is divided by g(x).
f(x)=32x25 +65x24 +205x23 +69x22 +41x21
+220x20 +46x19 +128x18 +236x17 <---(1)
divide by g(x)
Coefficient of leading term in f(x) is 32.
For 32 is α5 from table4, we use
g(x)*(α5)*x8
=α5*x25 +α5*α43*x24 +α5*α139*x23
+α5*α206*x22 +α5*α78*x21.....
=α5*x25 +α48*x24 +α144*x23 +α211*x22
+α83*x21.....
=32x25 +70x24 +168x23 +178x22 +187x21..... <---(2)
calculate exclusive logical sum (1) and (2)
f(x)'=7x24 +101x23 +247x22+146x21.....
We repeat same logic until this devide calculation is over.
Next, for 7 is α198,we use g(x)*α198*x7
If exponent of α is over 255,then we decrease it using α255=1
Finally we can get below remainder R(x).
R(x)=42x16 +159x15 +74x14 +221x13 +244x12 +169x11+239x10
+150x9 +138x8 +70x7 +237x6 +85x5 +224x4 +96x3 +74x2 +219x +61
(see table6)
So we can get
32 65 205 69 41 220 46 128 236
42 159 74 221 244 169 239 150 138 70 237 85 224 96 74 219 61
next page : Data allocation.
previous page
[1]
[2]
[3]
[4]
[5]
[6]
[7]
next page